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Abstract 

Explicit second-order accurate finite-difference schemes for the 

approximation of hyperbolic conservation laws are presented. These schemes 

are nonlinear even for the constant coefficient case. They are based on 

first-order accurate upwind schemes. Their accuracy is enhanced by locally 

replacing the first-order one-sided differences with either second-order one- 

sided differences or central differences or a blend thereof. The appropriate 

local difference stencils are selected such that they give TVD schemes of 

uniform second-order accuracy in the scalar, or linear systems, case. Like 

conventional TVD schemes, the new schemes avoid a Gibbs phenomenon at 

discontinuities of the solution, but they do not switch back to first-order 

accuracy, in the sense of truncation error, at extrema of the solution. The 

performance of the new schemes is demonstrated in several numerical tests. 



INTRODUCTION 

The notion of TVD goes back to Harten’s ground breaking paper [ 2 ] .  He 

set out to construct second-order accurate finite-difference schemes for 

hyperbolic conservation laws which do not exhibit the spurious oscillations 

near discontinuities of the solution, as generated by the more classical 

second-order methods, such as Lax-Wendroff [ 7 ] .  Harten discovered that any 

TVD scheme is a monotonicity preserving scheme which always produces 

oscillation-free weak solutions of hyperbolic problems. As Van Leer did in 

his early works [14,15], Harten realized that monotonicity preserving schemes 

can be only extended to higher-order accuracy when they are nonlinear even for 

the constant coefficient case. Following Roe [ 9 ]  and Sweby [ 1 2 ] ,  such 

nonlinear schemes can be interpreted as first-order accurate upwind schemes 

whose excessive numerical dissipation is counterbalanced by adding just enough 

antidiffusion to gain resolution while still suppressing pre- and post-shock 

oscillations. The amount of antidiffusion is monitored by flux limiters. 

Yet, at extrema of the solution, all formulations suggested so far for thcse 

limiters [1,9,12,14,15] restore the baseline first-order scheme by setting the 

antidiffusive flux to zero. This perpetual damping of extrema reduces the 

global error of TVD schemes to be of only first order in the Loo norm [4], 

which impedes particularly the approximate solutions for transient wave- 

tracking problems. 

To remedy this shortcoming, Harten and Osher [4] recently introduced 

their “Uniformly high-order accurate NOnoscillatory (UNO) schemes. “ When 

applied to nonoscillatory initial conditions, UNO schemes preserve their 

nonoscillatory nature although they are allowed to accentuate local extrema. 



Thus, they are not only no longer TVD, but they also do no longer ensure that 

the numerical solution converges to the physically correct one [ 2 , 4 , 1 2 ] .  The 

question whether one really has to sacrifice the TVD property for the sake of 

unif o m  accuracy motivated the present study. 

This paper describes explicit high resolution schemes of uniform second- 

order accuracy which are also TVD in the scalar case. The next section 

briefly recapitulates the Riemann problem and Roe’s [8]  (first-order accurate) 

approximate Riemann solver to set the stage for the construction of those high 

resolution schemes. As usually done, first the rather watered-down special 

case of scalar conservation laws is examined which gives us a class of new TVD 

schemes of Uniform second-order Accuracy (in short: TVDUA schemes). The 

design principles of those TVDUA schemes are then applied to hyperbolic 

systems using a field-by-field decomposition. Eventually, the TVDUA schemes 

and their high-resolution counterparts for hyperbolic systems (which are not 

necessarily TVD for nonlinear systems) compete with conventional TVD schemes 

in several comparative numerical studies, where they show their superior 

accuracy at virtually no computational extra cost. 

TEE PROBLEM AND ITS FIRST-OBDER ACCURATE APPROXIMATE SOLUTIONS 

Consider an intial value problem for a hyperbolic system of conservation 

laws 

with 

( 2 .  la) 

(2.lb) 
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where the initial data Q o ( x )  are assumed to be piecewise smooth functions 

which are either periodic or of compact support. The state vector 

)T is a column vector of M unknowns and the flux 

F(Q) is a vector-valued function of M components. The system in (2.la) is 
Q = (q1,42, Am, 94M 

hyperbolic in the sense that the MxM Jacobian A(Q) = a F / a Q  has M real 

eigenvalues X . The relation between the eigenvalues X and the Jacobian 

A(Q) is given by 
m m 

M 
A(Q) = 2 r A R m m m  m= 1 

where the columns rm are linearly independent right eigenvectors and the 

rows R give an orthonormal set of left eigenvectors (i.e., Cr. R = 6 .  .). 
m 1 j 1 J  

Let Qj and Q j + l  denote two piecewise constant states of a Riemann 

problem. These two states are separated from each other by one or more wave 

families, which can be a shock, an expansion fan, or a contact discontinuity. 

Each wave family m(=1,2, ..., M) is propagated with its own wave speed which 

is given by the corresponding eigenvalue. In order to apply this wave model 

approach (cf. [16]) to equation (2.la), consider (2.la) for a computational 

. The flux cell with its centroid at 

is defined by 

xj* 1/2 xj and its two interfaces at 

F1+ l/2 

where a =!I A Q with Aj+1 /2 ( )  = Oj+l - O j  defines the 
m j+ '/2 m , j+ 92 j+ 1/2 

strength of the m-th wave and Am f = (IAml+Am)/2. 
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Following Roe [ 8 ] ,  a mean value matrix 

with the properties 

(i> x(Q,Q> = A(Q)  

is utilized to write ( 2 . 3 )  a s  

Using ( 2 . 4 ) ,  a first-order accurate finite-difference approximation to (2.1) 

is easily constructed 

'X 
= xj+ 1/2 j- 

where A()n = ()*I - ()*, 't is the time step size, and h 

An approximate solution computed with ( 2 . 5 )  tends to the exact solution for 

small data due to property (i). Property (ii) ensures that the approximate 

solution is exact if Q and Qj+l are connected by a single discontinuity, 

regardless of its size. This becomes evident by comparing (ii) with the jump 

condition 

j 
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. 

- 
where V, the discontinuity speed, is an eigenvalue of A(Qj,Qj+l) and 

A Q is the corresponding eigenvector. 
j+ 112 

Remark 2.1: The derivation of the scheme in (2 .5 )  tacitly implies that we 

have to deal with a Riemann problem at each and every interface. Then, the 

assumption of piecewise constant states 

actual function Q(x) in x j- 1/2 < xj+ 1/* with its cell average 
Qj is equivalent to replacing the 

j+ ‘12 
Q dx’. Consequently, the scheme in (2 .5 )  and its higher-order 1 

Qj ‘XI 
j- ‘/2 

X 

variants as discussed in this paper give approximations to cell averages of 

xj * the exact solution rather than to its point values at the centroids 

Remark 2.2: The scheme in (2 .5 )  is not entropy satisfying [ 6 ]  and admits 

stationary expansion shocks as its steady solution. Although this can be 

readily rectified [ 2 , 3 ] ,  these entropy considerations will be ignored here for 

the sake of a simplified presentation. 

UNIFORMLY SECOND-OBDER ACCURATE SCHEHES FOB SCALAR CONSERVATION TAWS 

For clarity we first consider the simplest possible case of a linear 

scalar equation 

The assumption a>O does not impede generality; the contrary case is easily 

treated by symmetry. Applying the scheme in (2 .5 )  to (3.1) yields 
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where h is restricted to be constant, although results €or irregular grids 

follow in a similar manner. A general second-order formulation of (3.2) reads . 
- +  

Aqn + v[1+0.5(1-v)($ -$ )]A 1 qn = 0. 
J j 1-1 j- /2 

(3.3) 

As usual [5,9,10,12,14], 

ratio of two consecutive 

are defined as functions of the 
'j 

the quantities 

gradients 

0 

qn f 0 
j* '/2 for A 

for A j + l p n  = O 

* satisfy Sweby's 
'j 

The scheme in (3.3) is conservative when the quantities 
- - +  

= r .$ .). We will Christian the quantities 
'j J J 

symmetry property 1121 (i.e., 

41; 
stencil of a particular finite-difference scheme. Choose $ 4  = r4 and 

with stencil selectors since they determine the underlying difference 
- - 

+ 
= const = 1, and 

- 'j 

'j = 'Onst 
For 

Warming-Beam scheme 

at discontinuities 

J J 

recovers the second-order Lax-Wendroff scheme [7]. 

+ j  = rj* (3.3) is identical with the second-order 

Both linear schemes exhibit spurious oscillations 

q(x) since they are not TVD [ 12 ]  (i.e., not 

+ +  

f 
J 

monotonicity preserving [2]). We turn now to find stencil selectors '(r.) 

which make ( 3 . 3 )  both TVD and uniformly second-order accurate. 

For a general scheme written in the form 
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t 

n + 
(3.5) 

n are data dependent (i.e., functions of the set 19,) = 
f 
j7 1/2 

where c 

o..., qj-1*qj’qj+l ,...)), it is easily shown [ 2 ]  that sufficient conditions 

for it to be TVD are the inequalities 

n n n  

A comparison of (3.3) and (3.5) yields 

The scheme in (3.3) is TVD if 

* satisfy condition (3.8). To An infinite multitude of functions 
J 

derive one that is useful for the construction of uniformly second-order TVD 

schemes, additional constraints are required. Two of those constraints are 

* 
0 j  = 0(r.) 

(3.9a) 

(3.9b) 

Condition (3.9a) is necessary to make (3.3) TVD [ 2 ] ,  and condition (3.9b) 
+ + -  

= r . 4 . ) ,  which 
‘j J J 

immediately follows from Sweby’s symmetry condition (i.e., 

makes scheme (3.3) conservative. 
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Having earlier established the notion of stencil selectors, makes it 

quite straightforward to define further bounds on +f. Second-order central 

differences do not introduce any dissipation and they have less dispersion 

than fully one-sided second-order differences. This suggests to control + 
such that the scheme in (3.3) recovers the Lax-Wendroff scheme whenever there 

is no conflict with the TVD conditions in (3.8) and (3.9a). A function +(rf) 

that satisfies these conditions is an antisymmetric extension of the min mod 

f 
j 

limiter 

(3.10) 

which, for y=O, is the conventional min mod limiter [2,4,5,9,12,18]. The 

conventional min mod limiter, like various other TVD limiters [9,12], returns 

$(rj<O) = 0 which reduces the scheme in ( 3 . 3 )  to a first-order upwind scheme 

even at smooth extrema of the solution q(x). Applying the antisymmetric min 

f 

mod limiter in (3.10) to the scheme in (3.3) shows that second-order accuracy 

is maintained even across extrema (i.e., for r < 0). Since the scheme 

becomes TVD of uniform accuracy, we call it a TVDUA scheme. It is interesting 

to note that equation (3.10) admits negative values for +(rj); a phenomenon 

incompatible with the notion of "antidiffusion" [9,12], which is often used to 

* 
j 

* 

devise second-order TVD schemes. 

Remark 3.1: In the remainder of this paper we will speak of first-order TVD 

schemes when $(r.)=const=O, second-order TVD schemes when $(rj) is defined 

by a conventional min mod limiter, and of TVDUA schemes when +(rj) is 

defined by an extension of the conventional TVD limiter as in (3.10). 

f f 
J 

f 
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The ex tens ion  of t he  TVDUA scheme t o  a non l inea r  conserva t ion  l a w  l i k e  

is s t r a igh t fo rward .  Applying the  scheme i n  (2.5) t o  (3.11), we o b t a i n  

(3.12)  

where V j T 1 I 2  * = a  * j T  1 l2 .r/h is now a l o c a l  CFL number with a = ( ) a l f a ) / 2 .  

Using the  gene ra l  form i n  (3.5),  a conse rva t ive  second-order ex tens ion  t o  

(3.12) which accounts  f o r  t he  l o c a l  f low d i r e c t i o n  has the  c o e f f i c i e n t s  

* The c o e f f i c i e n t s  i n  (3.13) preserve  conservancy whenever the  l imi te rs  

satisfy Sweby's symmetry p r o p e r t y  [ 121 ( i . e . ,  

TVD cond i t ions  ( 3 . 6 )  when 

j - - +  = r .$ .), and they  satisfy t h e  
'j J J 

(3.14a) 

(3.14b) 

are s a t i s f i e d  f o r  a l l  0 < u* 1 < 1 when 9 jr- 12 
These r e s t r a i n t s  of 

chosen is a l r eady  def ined  i n  equat ion  (3.10). 
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~ F O R K L Y  SECOHD-OBDEB ACCURATE HIGH RESOLUTION SCBEHES FOB HYPERBOLIC =STEMS 

The TVDUA schemes are formally extended to hyperbolic systems in the 

usual field by field decomposition [1,2,4,5,9,12,18]. Defining characteristic 

variables: 

and assuming the constant coefficient case (i.e., A is a constant MxM 

matrix), equation (2.1a) is written as a set of M decoupled linear scalar 

conservation laws 

(w,) + Xm(wm>x = 0 

A f irst-order upwind approximation t o  (4.1) reads 

+ Awn - (-r/h)(X-A. 1 w  - X A w )n = 0 
j m J+ /2 m m j- 1/2m 

The uniformly second-order accurate TVDUA scheme for linear scalar 

conservation laws as defined in ( 3 . 3 )  and (3.10) is straightforwardly 

applicable to (4.2) : 

with vi = X i  T/h and 
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where 

wn # 0 

wn = 0 

j* 1/2 m 

j* 92 m 

for A 

for A 

(4.5) 

The nonlinear system case is recovered in two steps [ 5 ] :  first, the TVDUA 

scheme in ( 4 . 3 )  is modified as 

to accommodate the nonlinear scalar conservation law case. The stencil 

selectors 4(rm .) remain the same as in ( 4 . 4 ) .  Following a multiplication 

of ( 4 . 6 )  by the set of the right eigenvectors I: from the left, a 

conservative, uniformly second-order accurate high resolution scheme for the 

nonlinear systems case is easily derived 

f 
* J  

n 
m 
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- 1  , j+ 1/2 +m, j+l [ 1-0 5( 1-vm A Q j  - m 1 {rm,j+1/2vm,j+ 
- - n 

Although it is no longer necessarily TVD, the scheme in ( 4 . 7 )  gives 

highly resolved solutions in regions of smooth Q(x,t) while spurious 

oscillations are suppressed in regions of rapid changes in gradient. 

NUMERICAL EXMPLES 

Consider the constant coefficient case 

qt + 9, = 0 (5 .  la) 

with 

q(x,t=O) = sinnx, 0 < x < 2 (5.lb) 

and periodic boundary conditions for an initial numerical test. The exact 

solution to (5.1) f o r  any given time is easily computed by solving the 

characteristic equation 

q(x,t) = sin n(x-t) (5.2) . 
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Let the interval [0,2] be divided into (J-1) equidistant computational cells 

with their centroids being defined at 

Figure 1 shows comparisons of the exact solution (solid line) with three sets 

of numerical results, at t=2 with ~/h=0.8 and 5x21. As expected, the 

first-order accurate TVD scheme (fig. la) approximates the exact solution 

rather poorly: a consequence of its hefty inherent numerical dissipation. A 

comparison of figures lb and IC demonstrates how the degeneracy to first-order 

accuracy at local extrema in the second-order accurate TVD scheme adversely 

affects the global accuracy in the neighborhood of extrema. This results is 

substantiated by the grid refinement study in figure 2 for J=21, 41, and 

81. The computations with the first-order TVD scheme converge with first- 

order accuracy in both the Ll and the LoD error norm. The TVDUA scheme is 

second-order accurate in L1 as well as in LoD; in between lies the second- 

order TVD scheme, which is second-order accurate in L1 but only first-order 

accurate in L,. 

Now we turn to examine numerical approximations to a nonlinear scalar 

problem defined by 

(5.4a) 2 
qt + (q / a x  = 0 

q(x,t=O) = a + 6 sinn(x+v), O<x<2 (5.4b) 

(5.4c) 



For O<t<to, the solution to (5.4) is smooth and is "exactly" computed by 

using, for instance, Newton-Raphson iterations to solve the characteristic 

re la t ion 

q(x,t) = a + B sinn(x+y-qt), O<t<to ( 5 - 5 )  

When t=to a shock develops at xo and moves with its shock speed qo for 

some time before it starts interacting with the expansion wave which brings 

about a rapid decay of the solution. The values qo, to, and xo are 

computed by requiring aq/ax -* 00 and a q/ax = 0. We find that a shock 

develops at = 1/Bn, xo = l-y+a/Bn, and that it moves for some time with 

its speed 

2 2 

t 
0 

q (xo,to) = a. 
0 

Figures 3 ,  4 ,  and 5 present computations of ( 5 . 4 )  for a=l ,  8'0.5, and 

y=O (i.e., q(x,O) = 1 + 0 .5  sin m); thus, a shock forms at t=2/n. The 

calculations are carried out on meshes as defined in (5.3). In figure 3, the 

"exact" solution (-solid line) is compared with three calculations of 

increasing accuracy at t=0.3 with ~/h=0.6 and J=21. Particularly the 

approximation of the "exact" solution in the region 1.5<x<2 reveals the 

superior resolution capability of the TVDUA scheme when compared to the first- 

and second-order accurate TVD schemes. The corresponding grid refinement 

study in figure 4 shows the convergence of the L1 and the L error norms 

for 5~21, 41, and 81. The solutions with the first-order TVD scheme converge 

with first-order accuracy in both the LL and the L error norm. The 

second-order TVD scheme proves to be second-order accurate in the L1 norm, but 

it is barely more accurate than the first-order TVD scheme in the Lm error 

norm. The TVDUA scheme is clearly second-order accurate in the Ll norm and 

8 
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almost second-order accurate in the La norm. The effect of error 

accumulation in time becomes apparent when the initial differences between 

"exact" and numerical solutions for t=0.3 in figure 3 are compared with the 

corresponding results in figure 5 for tB2/7r (i.e., when the shock develops). 

The f irst-order accurate results deviate considerably from the "exact" 

solution. The second-order TVD scheme captures the forming shock quite 

decently while the TVDUA scheme "nails" the "exact" solution. 

Finally, the TVDUA schemes are put to test when applied to nonlinear 

hyperbolic systems. It is difficult to find a suitable test case since the 

extra resolution power of our TVDUA schemes like that of the UNO schemes by 

Harten and Osher [ 4 ]  manifests itself best across smooth extrema of a 

solution. Consequently, we found the commonly chosen shock tube problems of 

Lax or Sod [ 2 , 3 , 4 ]  not very illustrative because their solutions are just 

constant states separated by waves. In order to at least achieve a smooth 

variation of states, we consider a one-dimensional flow in a duct of variable 

cross-sectional area B(x) which is described by 

H = (O,p(dhB/dx) ,O)T ( 5 . 6 )  

with the density p ,  the velocity u, the pressure p, and the internal energy 

per unit volume E = pe+pu / 2  (e: specific internal energy). The eigenvalues 

of the matrix A = aF/aQ are 

2 
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x1 = u-c, x2 - u, xg = u+c (c: speed of sound). 

The corresponding sets of orthonormal left and right eigenvectors are given 

elsewhere (cf. [2,8,18]). Using Roe's averaging [8] to compute the mean value 

matrix K(Q ,Q ), the approximate Riemann solver as described in Section 2 

is employed to obtain a first-order upwind approximation to (5.6). The second- 
j j+l 

order versions of that baseline scheme are constructed by formally extending 

the TVD and TVDUA concept to hyperbolic systems as described in Section 4 .  

The geometry of the divergent duct which is depicted in figure 6, is 

taken from a rather common benchmark test [2,10,11,18]. Specifying 

= 0.502, u = 1.299, e = 1.897 'in in in 

at the inflow cross section, a stationary compression shock forms at x = 4.816 

[13,181 when pout = 0.776 at the outflow cross section. The shock causes a 

problem in quantitatively determining the accuracy of the employed schemes, 

since the notion of accuracy being strongly coupled with the notion of 

truncation error in finite-difference methods becomes immaterial for 

nondifferentiable solutions. Despite this shortcoming, the results in figures 

7 and 8 demonstrate the superior resolution power of the TVDUA schemes when 

compared to the first- and second-order TVD schemes. A l l  computations are 

carried out on equidistant meshes with just 21 grid points and with ~/h=0.2. 

The "exact" solution (solid line) and their numerical approximations are 

plotted in terms of density (fig. 7) and velocity (fig. 8) as a function of x. 

The first-order TVD scheme does not only smear the shock, but it also 
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noticeably misses the "exact" solution for 2.5txt7.5: a range consisting of 

ten (!) grid points. The approximate solution computed with the second-order 

TVD scheme feels the ripples of the shock in a narrower regime with 3<x<6 

which translates to 7 grid points. Both TVD schemes resolve the shock with 

two intermediate zones, whereas, the TVDUA scheme captures the shock in just 

one interval. The TVDUA results also follow the "exact" solution much closer 

ahead and aft of the shock. 

CONCLUDING REMARKS 

A class of new explicit, uniformly second-order accurate high resolution 

schemes, which are TVD in the scalar, or linear systems, case, has been 

constructed, analyzed, and verified in several test calculations. Compared to 

conventional high resolution schemes which switch back to first-order accuracy 

at extrema of the solution, the novel schemes here called TVDUA schemes, yield 

a gain in accuracy at virtually no computational extra cost. The gain in 

accuracy becomes most apparent when solutions with smooth extrema are 

approximated as in the test calculations presented for scalar conservation 

laws. When dealing with essentially discontinuous solutions, the TVDUA 

schemes produce nonoscillatory solutions, they resolve shocks with just one 

interval, and they sustain their extra resolution capability almost unaffected 

even in the the neighborhood of a strong singularity. Future work will 

concentrate on the extension of the novel TVDUA schemes to multi-dimensional 

problems. 
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Figure 3(a)  

Figure 3(b) 

Figure 3. Smooth exact and numerical solutions for an one-dimensional , 

nonlinear wave equation problem: ti0.3, T/h = 0.6, 21 grid points. 
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Figure 5(a) 
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Figure 5. Exact and numerical solutions for an one-dimensional, wave 

equation problem at the onset of a shock formation: 

~/h-0.6, 21 grid points. 
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Figure 7 .  Exact and numerical density solutions for an one-dimensional, 

divergent nozzle flow: ~/h=0.2, 21 grid points. 
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Figure 8. Exact and numerical velocity solutions for an one-dimensional , 

divergent nozzle flow: ~Iha0.2, 21 grids points. 
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